US009367550B2

a2 United States Patent

Tanaka et al.

US 9,367,550 B2
*Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INFORMATION PROCESSING APPARATUS
AND FILE SYSTEM

(75) Inventors: Shinichi Tanaka, Kanagawa (JP);
Masaharu Sakai, Tokyo (IP)
(73) Assignees: Sony Corporation, Tokyo (JP); Sony
Interactive Entertainment Inc., Tokyo
(IP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 338 days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 13/347,239
(22) Filed: Jan. 10, 2012
(65) Prior Publication Data
US 2012/0191683 Al Jul. 26, 2012
(30) Foreign Application Priority Data
Jan. 25,2011 (JP) e 2011-013407
(51) Imt.ClL
GO6F 17/30 (2006.01)
(52) US.CL
CPC GO6F 17/30091 (2013.01); GO6F 17/30233
(2013.01)
(58) Field of Classification Search
USPC e 707/705; 711/162, 163
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,259,444 Bl
2004/0015723 Al*

7/2001 Palmer et al.
1/2004 Phametal.cccouevnn. 713/201

2007/0067586 Al* 3/2007 Mikami GO6F 11/1471
711/162
2007/0285719 Al* 12/2007 Kobayashi GOG6F 8/60
358/1.16

2008/0141018 Al 6/2008 Tanaka
2009/0125902 Al* 5/2009 Ghosh GO6F 9/45533
718/1
2010/0114889 Al* 5/2010 Rabiietal. 707/737
2010/0235831 Al* 9/2010 Dittmer GO6F 9/45558
718/1
2011/0252209 Al* 10/2011 Leecccovvrrnene. GO6F 12/1441
711/163
2012/0084768 Al* 42012 Ashok ... GO6F 9/45558
717/174

FOREIGN PATENT DOCUMENTS

JP 05-250241 A 9/1993

JP 07-013774 A 1/1995

JP 07-248908 A 9/1995
OTHER PUBLICATIONS

Office Action for corresponding JP Application No. 2011-013407,
dated Jan. 8, 2013.

Isao Ohishi, et al., “Hack the File System!,” BSD magazine, (Japan:
ASCII Corporation, No. 10, p. 139-144, (Dec. 14, 2001) (For rel-
evancy see Office Action for Application No. 2011-013407, dated
Jan. 8, 2013, p. 2 paragraph 2).

* cited by examiner

Primary Examiner — Shyue Jiunn Hwa
(74) Attorney, Agent, or Firm — Matthew B. Dernier, FEsq.

(57) ABSTRACT

In an information processing apparatus, a file system man-
ages files in a storage unit. Upon receipt of a boot instruction,
aprocess boot unit starts an application. Once the application
is started, a path acquisition unit acquires the path to an
application file in the storage unit. A mount unit associates the
path acquired by the path acquisition unit with a predeter-
mined virtual mount point. A processor specifies the prede-
termined mount point and then accesses the file.

2006/0123061 Al* 6/2006 Puustinen 707/200 6 Claims, 8 Drawing Sheets
12
/
FILE PROVIDING SERVER
12a 12b 12c
/
GAME FILE PATCH FILE DATA FILE
PROVIDING PROVIDING PROVIDING
SERVER SERVER SERVER
4
NETWORK
2 10
Z o
INFORMATION
AP PROGESSING
APPARATUS

[=+

U.S. Patent Jun. 14,2016 Sheet 1 of 8 US 9,367,550 B2

s
C=3
— A
i P
=0
S0
u_gn_
=& <C
TRle
o __125 9_
AN =
20
<’
[a v
(hed
O
o« <
T -
: 5
7
I, S
= o =0
~\Ja S\[es &
— T
= O
o — 20
oo o
o N
w
—
L.
m
q |oee
NN
-\ —
o
<’
S
~
L

US 9,367,550 B2

Sheet 2 of 8

Jun. 14, 2016

U.S. Patent

0¢ <

Lé

NROG__ AVIdS 14

w0 G\

w
Q 4Kl

(o321}
O W3d

S Q O
(]

JQD

¢ 9l4

US 9,367,550 B2

Sheet 3 of 8

Jun. 14, 2016

U.S. Patent

WNIa3N
ONIAH003d

o

=

8\)L‘

WNIa3N
ONIAHO03

LIND 041N
1Nd1Ino 63d

09
A T9

9/

- g

JATIA YIAIN -

€9~/

LINM TI04INDD |
GAaVO AHOWAW

z9—~/

LINM
TOHINCD 9sn

FOTAIA 1ndNI

0e—/

1Indino/indnI
OR3LS

HG—/

LEEFELS

£/

ANOHJOHO TN

26—/

JOSNIS NOILOW

G¢—'

a3ati

JOVIYIINE
—k 06—~
AOVHOLS it AHOWIN N IYIN
or—/ Yy~

19—/

LINA]
TOMINOT SdD

09—/

TANYd HONOL

AOIAJ0 AVIISIHA

89—

¢ Old

U.S. Patent Jun. 14,2016 Sheet 4 of 8 US 9,367,550 B2

FIG.4
device:/game/(title_id)/—
—boot_game.b
—files or dirs/..
—svys/...
FIG.5
GAMEQ: —
—boot_garhe.b
—files or dirs/...
—svys/ ...
FIG.6

device:/patch/(title_id)/—

—boot_game.b

—files or dirs/...

—3sys/ ...

US 9,367,550 B2

Sheet 5 of 8

Jun. 14, 2016

U.S. Patent

% --- O"ojul'swued
o AdOL103dId
jucal
AAVO
koo drguoo!
% +-- EUIJowWeIRd sAs
o qd—egjepmou
Jepgeiep
* jepTiejep
* qeures 100G ‘O3INVD
7 [
9L
ON1SSI00Yd tﬁmmﬁ
\ o ojur'awes AHOLO3HIC
oojul"swes AdOLO3dId d-jpuool ANVYD
a.o%o_w! HLlvd d-guooy
eieojoueled sAs elsjoweied SAs
qid _—ejepmau Jep-geiep
Yepeiep yep L erep
qowes 1004 (PI'a|Y1)/Yyoled /2201A0D gauwes 100q DIANVYD
7 7
Vi L

L Ol

U.S. Patent

FIG. 8

Jun. 14, 2016 Sheet 6 of 8 US 9,367,550 B2
20| INPUT DEVICE TOUGH PANEL |~_gg
92
/
= [NPUT UNIT
40
y /
94
/ CPU
PROCESS BOOT UNIT
100
/
FILE SYSTEM
102
’
PATH AGQUISITION 120
ONIT J
104 PROCESSOR
’ 122
MOUNT UNIT Z
APPLICATION
196 EXEGUTING UNIT
PATH SHITCHING
ONIT 1?4
198 FILE ACCESS UNIT
ATTRIBUTE
SETTING UNIT
110
J
PATH GONVERSION
UNTT
130
/
STORAGE UNIT
RECORDING
4,6 80 MEDIUM 70
- REGOﬁB!NG
STORAGE oS

10
INFORMATION PROCESSING
APPARATUS

U.S. Patent Jun. 14,2016 Sheet 7 of 8 US 9,367,550 B2

FIG.9

PROCESS 1D} TITLE 1D PATH INFORMATION MOUNT POINT
1 ABGCTENNIS? | device:/game/ABCTENNIS2/ GAMEO
2 DEFSOCCER | device:/game/DEFSOGGER/ GAMEO

US 9,367,550 B2

Sheet 8 of 8

Jun. 14, 2016

U.S. Patent

03FAVYD N.._mumeLaQ\w\nw\NwHZZm._.0m<\e_o”_.ma /:20lA2D N.LB.OEN\"NQ\W\Q CSINNILOGY i
03INVD q-1d/e3epmau/ZSINNILOGY /ydredfeoinep | qud/eiepmou | ZSINNILOAY | |
03INVYD 18pZeIep,/ZSINNI LOgY /oues 001n0p ®P7eRP | ZSINNILOGY | |
03INVD P’ 1 Eep/ZSINNILOEY /Yoted o0Aap ¥p'ieiep (ZSINNILOAY | |
0JAVD qrewed 100q/ZSINNI LOGY /Yored foo1nep qewes00q| ZSINNILOGY I
INIOd LINNOW NOTLVYNYOANI H1Vd SINTINOO a1 TUIL | gedling
oL 9l1d

US 9,367,550 B2

1
INFORMATION PROCESSING APPARATUS
AND FILE SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an information processing
technique implemented by an information processing appa-
ratus such as a game device.

2. Description of the Related Art

Game software are generally distributed and sold in the
form of an ROM medium such as an optical disk, magneto-
optical disk, or Blu-ray disk. The game software recorded in
a ROM medium cannot be rewritten, and so patches are
applied when bugs, if any, in parts of the game software are to
be fixed or the functions are to be altered. Reference (1) in the
following Related Art List, for example, discloses a game
device that performs game booting by loading into memory a
boot file with newer version information after comparing the
version information contained in a patch file against the ver-
sion information recorded in a recording medium.

RELATED ART LIST

(1) United States Patent Application Publication No. 2008/

0141018 Al

With the development of the Internet, an environment has
been created in which game files, including game programs,
and patch files are distributed from servers to user terminals
over the Internet. Downloaded game files and patch files are
installed in a storage of the user terminal and managed by a
file system. A game program, when booted, needs to access
the contents held in the game file or the patch file, but the
game program does not normally have a grasp of where in the
storage the contents are being held. Therefore, the game
program may, for instance, call a system utility, inquire about
anecessary path to the contents, and access the file following
the path.

Even when a utility is available that searches for the path
and conveys the thus searched path to the game program, it is
also possible that the game program, as appropriate, has the
path-to-be-accessed embedded therewithin. However, file
management must always be carried out by the file system of
theuser terminal. Therefore, there may be instances where the
game program accesses an inappropriate file if a path difter-
ent from the actual path in the file system is embedded there.
In view of these situations, the development of a system that
enables both efficient and secure file management is desired.

Also, in the presence of a patch file, the system executes a
game booting process by loading a boot file of the patch file in
memory. Atthis time, however, the game file and the patch file
are stored in their respective areas of the storage. Therefore, it
is necessary that the patch file to be executed recognizes itself
being a patch file and then accesses the original game file.
Thus, in accessing a certain data file, the game program must
decide each time whether it is a game file or a patch file to be
accessed. As a result, in the presence of a patch file, the file
access process is made complicated by the need for operation
to determine the path.

SUMMARY OF THE INVENTION

A purpose of the present invention is therefore to provide a
technology for efficiently executing file access.

In order to resolve the aforementioned problems, an infor-
mation processing apparatus according to one embodiment of
the present invention includes: a storage unit configured to

10

15

20

25

30

35

40

45

50

55

60

65

2

store an application file used to execute an application; a file
system configured to manage a file in the storage unit; a
booting unit configured to boot the application upon receipt
of a boot instruction; and a processor configured to execute
the application, and the file system includes: a path acquisi-
tion unit configured to acquire a path to the application file
when the booting unit boots the application; and a mount unit
configured to associate the path acquired by the path acqui-
sition unit with a predetermined m virtual mount point. The
processor specifies the predetermined mount point so as to
access the file.

Another embodiment of the present invention relates to a
file system. The file system manages files in a storage unit that
stores an application file, and the file system includes: a path
acquisition unit configured to acquire a path to the application
file when an application is booted; and a mount unit config-
ured to associate the path acquired by the path acquisition unit
with a predetermined virtual mount point.

Optional combinations of the aforementioned constituting
elements, and implementations ofthe invention in the form of
methods, apparatuses, systems, recording medium, computer
programs and so forth may also be practiced as additional
modes of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will now be described by way of examples
only, with reference to the accompanying drawings which are
meant to be exemplary, not limiting, and wherein like ele-
ments are numbered alike in several Figures in which:

FIG. 1 shows an information processing system according
to an embodiment of the present invention;

FIG. 2 shows an example of the appearance of an informa-
tion processing apparatus according to an exemplary embodi-
ment of the present invention;

FIG. 3 shows a circuit configuration of an information
processing apparatus;

FIG. 4 shows a directory structure of game files;

FIG. 5 shows a virtual directory structure of a game file
mounted at a predetermined mount point “GAMEQ” by a file
system,

FIG. 6 shows a directory structure of a patch file;

FIG. 7 is a diagram for explaining an overlay processing;

FIG. 8 shows functional blocks for managing files in an
information processing apparatus;

FIG. 9 shows a correspondence table which is generated by
a mount unit; and

FIG. 10 shows a correspondence table generated by a
mount unit.

DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described by reference to the
preferred embodiments. This does not intend to limit the
scope of the present invention, but to exemplify the invention.

FIG. 1 shows an information processing system 1 accord-
ing to an exemplary embodiment of the present invention. The
information processing system 1 includes an information pro-
cessing apparatus 10, which is a user terminal, and a file
providing server 12. The file providing server 12 includes a
game file providing server 12a, which provides game files
including game programs, a patch file providing server 125,
which provides patch files to be applied to the games, and a
data file providing server 12¢, which provides data files to be
used in the games.

The information processing apparatus 10, the game file
providing server 12a, the patch file providing server 125, and

US 9,367,550 B2

3

the data file providing server 12¢ are connected in a manner
that permits communication via a network 4 such as the
Internet or wired LAN. The information processing apparatus
10, which is equipped with a wireless communication func-
tion, downloads a desired file from the file providing server 12
by connecting to the network 4 via an access point (hereinaf-
ter referred to as “AP”) 2. The AP 2 functions as a relay unit
that connects the information processing apparatus 10 to
another access point by wireless LAN (Local Area Network)
or connects the information processing apparatus 10 to the
network 4. Thus the information processing apparatus 10 may
have a communication function by wireless LAN, but the
information processing apparatus 10 may also download files
from the file providing server 12 by connecting to a mobile
telephone network using a mobile telephone communication
scheme such as the third-generation mobile communication
system.

The game file providing server 12a, the patch file providing
server 125, and the data file providing server 12¢ may be
constituted by a single server, but may also be constituted by
a plurality of servers. Also, two or more combinations of the
game file providing server 124, the patch file providing server
1254, and the data file providing server 12¢ may be constituted
by a single server.

The game file providing server 12a provides game files. A
game file includes a boot file, a group of files for executing a
game such as a game program, and a group of files to be used
by the system software of the information processing appa-
ratus 10. The game program is a program necessary for the
execution of a game, and the game progresses as the game
program is run. The boot file is a program for starting the
game program, and the game program is called out and
executed as the boot file is executed. The group of files to be
used by the system software includes, for instance, game icon
image data to be displayed on a menu image of the informa-
tion processing apparatus 10.

The patch file providing server 125 provides a patch file to
be applied to a game. The patch file includes a game program
with the bugs fixed, a data file for changing game functions,
and the like. The patch file has the same file composition as
that of the game file and includes contents to be replaced with
contents included in the game file. As used herein, the term
“contents” or “content” refers collectively to programs, data
files, and the like contained in the game file or the patch file.

Thus, when both the game file and the patch file are
installed and when the contents bearing the same name is
included in both the game file and the patch file, the informa-
tion processing apparatus 10 executes a game using the con-
tents included in the patch file. Though described later, a
game file and a patch file are stored in their respective separate
directories and therefore the contents of the game file is not
overwritten by the contents of the patch file. It is also to be
noted that when plural versions of patch files are downloaded
by the information processing apparatus 10, the information
processing apparatus 10 uses the contents of a patch file of a
newer version and thus the game is executed using the most
up-to-date version.

The data file providing server 12¢ provides data files con-
stituting new characters or game scenes that are to be added to
the progress of an original game. The data files held by the
data file providing server 12¢ are used in an additional manner
along the progress of the original game and therefore these
data files will be referred to as “additional data file” or “addi-
tional data files” hereinafter.

FIG. 2 shows an example of the appearance of an informa-
tion processing apparatus 10 according to an exemplary
embodiment of the present invention. The information pro-

10

20

25

30

35

40

45

50

55

60

65

4

cessing apparatus 10 shown in FIG. 2 is a mobile terminal
equipped with a wireless communication function. Also, it
should be appreciated that the information processing appa-
ratus 10 may be connected to the network 4 via cable and it
may be a stationary terminal, instead of a mobile terminal.

As shown in FIG. 2, input devices 20, such as instruction
input buttons 21, direction keys 22, an R button 23, and an L
button 24, and a display device 68 are provided on the front
side of the information processing apparatus 10, which is the
side thereof facing a user who holds and operates it. The
display device 68 is provided with a touch panel 69 that
detects contact by a finger of the user or a stylus pen or the
like. Provided inside the information processing apparatus 10
is a motion sensor 25 capable of detecting the inclination of
the information processing apparatus 10. It should be noted
also that the information processing apparatus 10 may be
provided with a back touch panel on the back side thereof.

The user, while holding the information processing appa-
ratus 10 with both hands, can operate the instruction input
buttons 21 with the thumb of the right hand, the direction keys
22 with the thumb of the left hand, the R button 23 with the
index finger or the middle finger of the right hand, and the L
button 24 with the index finger or the middle finger of the left
hand, for instance. Also, when operating the touch panel 69,
the user may hold the information processing apparatus 10
with both hands and operate the touch panel 69 with the
thumbs of both hands, or may hold the information process-
ing apparatus 10 with the left hand and operate the touch
panel 69 with the right hand, the direction keys 22 with the
thumb of the left hand, and the L button 24 with the index
finger or the middle finger of the left hand.

FIG. 3 shows functional blocks of the information process-
ing apparatus 10. The display device 68 display images gen-
erated by the respective functions of the information process-
ing apparatus 10. The display device 68 may be a liquid
crystal display device or an organic EL display device. The
touch panel 69 is so provided as to be superimposed on the
display device 68, and detects the touch or contact of a user’s
finger, pen or the like. The touch panel may implement any of
a resistive overlay method, a surface electrostatic capacitive
method, a projected electrostatic capacitive method, and the
like. In the information processing apparatus 10, the display is
comprised of the display device 68 and the touch panel 69.

A wireless communication module 30 is constituted by a
wireless LAN module compliant with a communication stan-
dard such as IEEE 802.11b/g, and connects to the network 4
via the AP 2. The wireless communication module 30 may
communicate directly with the other information processing
apparatus 10 in ad-hoc mode. A mobile telephone module 32
is compatible with a third digital mobile telephone scheme
compliant with the international mobile telecommunication
2000 (IMT-2000) standard prescribed by the International
Telecommunication Union (ITU), and the mobile telephone
module 32 connects to a mobile telephone network 6. A
subscriber identity module (SIM) card, in which a unique ID
number to identify a telephone number of a mobile telephone
has been recorded, is inserted to the mobile telephone module
32.

In an interface 50, an LED (light emitting diode) 51 blinks
while the wireless communication module 30, the mobile
telephone module 32, and the like transmit and receive data.
A motion sensor 25 detects the movement of the information
processing apparatus 10. A microphone 52 inputs sound sur-
rounding the information processing apparatus 10. A speaker
53 outputs audio generated by the respective functions of the
information processing apparatus 10. A stereo input/output
terminal 54 receives the input of stereo audio from an external

US 9,367,550 B2

5

microphone, and outputs the stereo audio to an external head-
phone or the like. An input device 20 includes the aforemen-
tioned operation keys and the like and receives the input of a
user’s operation.

A CPU (central processing unit) 40 executes programs and
the like loaded in main memory 44. A GPU (graphics pro-
cessing unit) 42 performs computations necessary for the
image processing. The main memory 44 is comprised of
RAM (random access memory) and the like, and stores pro-
grams, data, and so forth that run and operate in the informa-
tion processing apparatus 10. A storage 46 is comprised of
NAND-type flash memory and the like, and stores programs,
data, and so forth. The storage 46 is used as a built-in type
auxiliary storage for a recording medium 80 (described later).

A GPS (global positioning system) control unit 60 receives
signals from GPS satellites and computes the present posi-
tion. A USB (universal serial bus) control unit 61 controls
communications between peripheral devices connected via
USBs. A memory card control unit 62 controls read and write
of data between the recording medium 80, with the recording
medium 80 such as flash memory inserted into the receiving
section. As the recording medium 80 is inserted into the
receiving section, the recording medium 80 is used as an
external auxiliary storage. A media drive 63 controls read and
write of data between the game recording medium 70, with
the game recording medium 70, which has recorded game
files, inserted to the media drive 63.

Game files are recorded in the game recording medium 70,
and the user can play a game by inserting the game recording
medium 70 to the media drive 63. A writable storage area is
provided and reserved in the game recording medium 70, and
a patch file and an additional data file, for example, may be
written to the writable storage area. As described above, in the
information processing apparatus 10, the game file can be
downloaded from the game file providing server 12a and can
be installed in the storage 46 or the recording medium 80.
Thus, the information processing apparatus 10 has a function
of executing the game files recorded in the game recording
medium 70 or those installed in the recording medium 80. A
video output control unit 64 outputs video signals to an exter-
nal display device, based on a standard such as HDMI (high
definition multimedia interface). The above-described
respective functional blocks are connected with each other by
a bus 90.

A description is now given of the summary of exemplary
embodiments. As a technical background of the exemplary
embodiments, when an application is to access its own file,
the application does not have a grasp of where the application
itself, namely its application file, is stored. Accordingly, as a
way of accessing the file, there is a method in which a desired
file is accessed in a manner such that the storage location of
the file is checked by the system utility based on the applica-
tion ID and then the path information indicating the path
location is received from the system utility. However, if this
method is employed, the application can access the storage
relatively freely and, for example, it is possible, in theory, that
the application can access application files other than the
application file belonging to its own application without
using a utility. This is not desirable in terms of security.

Thus, in the information processing apparatus 10 accord-
ing to the present exemplary embodiment, a file system asso-
ciates the path of an application file with a virtual predeter-
mined mount point (e.g., “GAMEQ”). The application file
contains beforehand the information with which this mount
point “GAMEO” is identified, and the application file
accesses the file by specifying this mount point. The corre-
spondence between the mount point and the path of the appli-

25

40

45

6

cation file is managed by the file system, so that the applica-
tion does not need to specify the actual path of the file and the
application can access a desired file by simply specifying
“GAMEQ”. From a security viewpoint, the file system does
not accept any path specification other than the path specifi-
cation of the mount point which has already been set even
when the application specifies the path of a file. Thus the
access to the applications is substantially restricted and there-
fore the security can be improved.

Even if a plurality of applications are booted, each appli-
cation can access its file by specifying the same mount point
“GAMEQ”. This is realized by distinguishing each applica-
tion process with the process ID. Thus, by employing the
information processing apparatus 10 according to the present
exemplary embodiment, there is no need of being conscious
of the storage location of the application file and also the file
can be accessed by simply specifying the mount point
“GAMEQO”. This is advantageous in that the burden on game
makers to development the file access can be considerably
reduced.

FIG. 4 shows a directory structure of game files. Here
“device:” specifies the storage 46, and the directory structure
shown in FIG. 4 indicates the storage locations within the
storage 46. However, game files may also be recorded in the
recording medium 80 or the game recording medium 70. The
game files are stored in the “game” directory. All of the game
files have each a title ID for unique identification, and each
game file in the “game” directory is stored in a subdirectory
identified by the title ID (title_id). It is to be noted that the
“title_id” constituting a subdirectory may be atitle ID itselfor
a code generated from the title ID.

“boot_game.b” represents a boot file for initially starting
the system software upon receipt of a boot instruction from
the user. “files or dirs”, which represents files or directories
collectively, shows the state in which a group of files consti-
tuting a game is stored. “sys” stores a group of files used by
the system software. This group of files includes a parameter
file defining atitle ID, an icon image file to be displayed on the
menu screen by the system software, and the like.

FIG. 5 shows a virtual directory structure of a game file
mounted at the predetermined mount point “GAMEQ” by the
file system. The file system provides a directory structure
shown in FIG. 5 to a game. Accordingly, the game can access
a file in the game file by specifying the mount point
“GAMEQ”. For example, if the file access command is
expressed as “open ()”, then the game sending the command
of “open (“GAMEQO: datal.dat”) to the file system will cause
the file system to recognize this command as an access com-
mand of “device:/game/(title_id)/datal.dat” as shown in F1G.
4 and the gameto read out the “datal .dat” from the storage 46.
As a result, the game has no need to know the actual storage
location of “datal.dat” and can access the file by simply
specifying the mount point “GAMEQ”.

In the present exemplary embodiment, when there is any
patch file, the file system of the information processing appa-
ratus 10 executes an overlay processing of the patch file on the
game file. The patch file as intended in this exemplary
embodiment has the same file structure as the game file and
carries contents to replace the contents of the game file. The
overlay processing in this exemplary embodiment is a pro-
cessing to virtually create a state in which the directory stor-
ing a game file is overwritten with a patch file. It should be
noted, however, that the game file and the patch file are stored
in separate locations and therefore the game file is not actually
overwritten with the patch file. Thus, the game can access the
patch file without being aware of the patch file because, when
the game accesses the directory storing the game file, the file

US 9,367,550 B2

7

system switches over to the path directed to the patch file as
needed. Described in the following is an example in which the
directory storing the game file is a virtual directory as shown
in FIG. 5, but it should be understood that the directory may
also be an actual directory as shown in FIG. 4.

FIG. 6 shows a directory structure of patch files. The patch
files are stored in a “patch” directory. In the “patch” directory,
the patch files are each stored in a subdirectory identified by
the title ID (title_id). A patch file has the same directory
structure as that of a game file shown in FIG. 4, but carries
contents only necessary for updating or addition, of the con-
tents carried by the game file. Note that although “boot_
game.b” is included in the example shown in FIG. 6, it will not
be included in the patch file if the “boot_game.b” included in
the original game file has no need of updating.

FIG. 7 is a diagram for explaining an overlay processing.
Shown for a game directory 72 is a virtual directory structure
of'a game file mounted at the mount point “GAMEOQ”. In the
game directory 72, “boot_game.b” is the boot file of the
game, and “datal.dat” and “data2.dat” are the data files of the
game, respectively. “parameter.a” is a parameter file of the
game to be used by the system software, “icon0.p” and
“iconl.p” are the icon image data to be displayed on the menu
screen, and “game_info.c” is the information data of the game
to be displayed on the menu screen.

Shown for a patch directory 74 is a directory structure of a
patch file. When a game is executed, the contents included in
the game directory 72 are replaced by the contents of the
patch file. In this example, the “boot_game.b”, “datal.dat”,
“parameter.a”, “icon0.p”, and “game_info.c” contained in the
patch file are used in the place of the files with the same names
contained in the game file. Note that “pr.b” in a patch file
represents additional data for the game

The file system generates a virtual game directory 72 by
mounting a game file at a predetermined mount point and then
searches for a patch file having the same title ID. Upon finding
the patch file, the file system searches out the contents of the
game file to be virtually overwritten from the game directory
72. Inthis example, the “boot_game.b”, “datal.dat”, “param-
eter.a”, “icon0.p”, and “game_info.c” are extracted. Note that
the “pr.b” is also extracted as a file to be added to the game
file.

Upon extracting the files to be overwritten, the file system
virtually generates a game file that is shown in a game direc-
tory 76. It should be understood that the file system does not
actually overwrite the directory of the game file with the patch
file, but generates a virtual game directory 76 which has the
game file overwritten with the patch file. The contents marked
with “*” in the game directory 76 are contained in the patch
file and are actually stored in the patch directory 74. There-
fore, with the file system executing an overlay processing, the
game can access desired contents without being conscious of
whether the contents to be accessed are those contained in the
game file or in the patch file.

FIG. 8 shows functional blocks for managing files in the
information processing apparatus 10. The main memory 44,
the GPU 42 and the like are omitted in FIG. 8. The informa-
tion processing apparatus 10 includes an input device 20, a
touch panel 69, an input unit 92, a CPU 40, and a storage unit
130. Those components are realized, in terms of hardware
components, by a CPU, memory and the like of an arbitrary
computer, and softwarewise by memory-loaded programs or
the like. Depicted herein are functional blocks implemented
by cooperation of hardware and software. Therefore, it will be
obvious to those skilled in the art that the functional blocks
may be implemented by a variety of manners including hard-
ware only, software only or a combination of both.

10

15

20

25

30

35

40

45

50

55

60

65

8

The input unit 92 receives operation instructions which are
inputted by the user through the input device 20 and the touch
panel 69. The storage unit 130, which stores a game file to be
used in the execution of a game, includes a storage 46, a
recording medium 80, and/or a game recording medium 70.
Note that, when there is any patch file, the storage unit 130
records the patch file in a directory other than that of the game
file. It is also to be noted that the game file and the patch file
may be stored in any of the storage 46, the recording medium
80, and the game recording medium 70. For convenience of
explanation, however, the description hereinbelow assumes
that the game file and the patch file are stored in the storage
unit 130.

The CPU 40 includes a process boot unit 94, a file system
100, and a processor 120. The file system 100, which man-
ages files in the storage unit 130, includes a path acquisition
unit 102, a mount unit 104, a path switching unit 106, an
attribute setting unit 108, and a path conversion unit 110. The
functions of the file system 100 are implemented by the kernel
layer of system software or the utility software or the like. The
processor 120, which executes a game, includes an applica-
tion executing unit 122 and a file access unit 124. The pro-
cessor 120 is implemented by the game software and the
utility software.

A description will first be given of a virtual mount process-
ing by the file system 100. Prior to the execution of a game,
the system software generates a menu screen with game icons
on the display device 68. The game icons are generated, for
example, from “icon0.p” shown in the game directory 72 of
FIG. 7. As the user selects a game icon through the input
device 20 or the touch panel 69, the input unit 92 receives a
selection operation by the user and conveys the received
selection operation to the process boot unit 94. The process
boot unit 94 receives the notification as a boot instruction of
the game. The process boot unit 94 identifies the title ID of the
game specified by the selection operation, searches out the
boot file (boot_game.b) of the game title ID from the storage
unit 130, and boots it.

In doing so, the process boot unit 94 gives a process 1D to
the application thus booted. The process boot unit 94 gives the
process IDs in order of booting the applications. Therefore,
the applications being executed are distinguished by means of
the process 1Ds. Accordingly, when a plurality of games are
executed simultaneously, the commands from each game are
distinguished by means of the process IDs. Note that the
following description will be given on the assumption that the
title ID of the game is “ABC TENNIS 2” and the process 1D
is “1”. Upon booting the boot file of the game “ABC TENNIS
27, the process boot unit 94 conveys a boot signal together
with the process ID and game title ID to the file system 100.

In the file system 100, the path acquisition unit 102
searches the storage unit 130, using a game title ID, and
acquires a path directed to the game file to be executed. As
shown in FIG. 4, in the present exemplary embodiment, a
game file is stored in a directory identified by the title ID.
Therefore, the path acquisition unit 102 acquires a path to the
game file by searching for the directory containing “/game/
ABCTENNIS2”. As the path acquisition unit 102 acquires the
path to the game file, the mount unit 104 associates the path
with the predetermined virtual mount point “GAMEO0” and
thereby generates a correspondence table. Note that, once a
boot file is booted, the path acquisition unit 102 and the mount
unit 104 execute a mount processing automatically without
any instruction from the processor 120.

FIG. 9 shows a correspondence table which is generated by
the mount unit 104. Recorded in the correspondence table are
the process ID, the title ID, the path information of the game

US 9,367,550 B2

9

file, and the mount point in correspondence with each other. It
is to be noted that, in the correspondence table of FIG. 9, the
process 1D and the path information of the game file are
associated with each other in one-to-one correspondence, but
the arrangement may be such that the process 1D is associated
one-to-one with the path information of each of the files
(contents) contained in the game file. The processor 120,
when sending a file access command to the file system 100,
adds a process 1D to the command. The file system 100 can
identify the access point of the file by referencing the process
ID and identifying the path information associated therewith
in the correspondence table.

For purposes of illustration, FIG. 9 shows a correspon-
dence table which is generated when a game having another
game title ID “DEF SOCCER” is further booted after the
booting of ABC TENNIS 2. As shown, the mount unit 104
sets the same mount point as that of “ABC TENNIS 2” for the
game process of “DEF SOCCER”. In this manner, the file
system 100 sets the same mount point “GAMEOQ” for all the
game files and manages the file paths by the process IDs.

Thus, the mount processing by this file system 100 enables
a game to access the game file using a virtual directory struc-
ture as shown in FIG. 5. Note that the game file already
contains information by which to identify the mount point
“GAMEQ”. Therefore, with a boot file booted, the boot file
accesses necessary contents, using the mount point
“GAMEQO”. And, with a game program booted, the game
program accesses desired contents, using the mount point
“GAMEQ” also.

The functions of the processor 120 are implemented as a
boot file is executed by the process boot unit 94 and a game
program is executed by the boot file. The application execut-
ing unit 122 controls the progress of a game, and the file
access unit 124 reads out files necessary for the progress of
the game from the storage unit 130. For example, when data
file “datal.dat” is to be read out from the storage unit 130, the
file access unit 124 sends a command of “open (“GAMEO:
datal.dat”)”, together with the process 1D, to the file system
100. In the file system 100, the path conversion unit 110
identifies the path information associated with the mount
point “GAMEQ” from the process ID and converts the virtual
mount point to the path (device:/game/ABCTENNIS2/
datal.dat) in the storage unit 130. As a result, the file access
unit 124 can access “datal.dat” in the storage unit 130.

Now a description will be given of the overlay processing
by the file system 100. An overlay processing in the present
exemplary embodiment is executed after the path to a game
file is mounted at a virtual mount point. After the mount unit
104 has generated the correspondence table as shown in FIG.
9, the path acquisition unit 102 searches the storage unit 130
for the presence of any patch file having the same game title
ID. Without the presence of such a patch file, the overlay
processing will not be executed. As shown in FIG. 6, a patch
file according to the present exemplary embodiment is stored
in a patch directory identified by a title ID. Hence, the path
acquisition unit 102 searches for a directory containing
“/patch/ ABCTENNIS2” and, if there exists such a directory,
acquires the path to the patch file. As the path acquisition unit
102 acquires the path to the patch file, the path switching unit
106 compares the patch file with the game file by referencing
the directory of the patch file. More specifically, the path
switching unit 106 switches the path directed to the contents
of the game file with the path directed to the contents of the
patch file if there is contents with the same name in both the
game file and patch file.

Referring to FIG. 7, the path switching unit 106 compares
the contents of the game directory 72 with the contents of the

20

30

40

45

55

65

10

patch directory 74. Thus, the path switching unit 106 deter-
mines that “boot_game.b”, “datal.dat”, “parameter.a”,
“icon0.p”, and “game_info.c” are overlapping and that “pr.b”
is included only in the patch directory 74. The path switching
unit 106 receives the results of this determination and gener-
ates a virtual game directory 76. The contents marked with
“* in the game directory 76 are contents in the patch file. In
the overlay processing, the mount unit 104 generates a cor-
respondence table by setting path information for each of the
contents.

FIG. 10 shows a correspondence table generated by the
mount unit 104. Recorded in the correspondence table are a
process 1D, a title ID, a content, the path information of the
content, and a mount point in correspondence with each other.
As shown, the path information of the patch directory is
recorded as the path information of contents that are overlap-
ping in the game file and the patch file. It is to be noted that the
mount point “GAMEOQ” remains unchanged. Thus, the mount
unit 104 generates a correspondence table without changing
the mount point and thereby can provide a virtual game direc-
tory 76, which has an appearance of the game file overwritten
with the patch file, to the processor 120. Accordingly, it is not
necessary for the file access unit 124 in the processor 120 to
be conscious of whether the files to be accessed are in the
game file or the patch file, which has an effect of making file
access processing simpler.

When the path acquisition unit 102 has found a plurality of
patch files through a search of the storage unit 130, the path
acquisition unit 102 acquires the version information on the
patch files, acquires the path to the patch file of the latest
version, and conveys the acquired path to the path switching
unit 106. Note that when the version information for the
plurality of patch files is the same, the path acquisition unit
102 acquires the path to the patch file of a newer update
(installation) date. In the case of executing a game file in the
game recording medium 70, if the version information for the
patch files recorded in the recording medium 80 and the game
recording medium 70 respectively is the same, it is preferable
that the path acquisition unit 102 acquires the path to the patch
file recorded in the game recording medium 70 irrespective of
the update dates. This will allow the execution of the game
with the file access unit 124 accessing the game recording
medium 70.

It should be appreciated that the information processing
apparatus 10 according to this exemplary embodiment can
mount the path to a file other than a game file at a virtual
mount point, using the mechanism of the mount processing as
described above.

The information processing apparatus 10 stores an addi-
tional data file downloaded from the data file providing server
12¢ in the storage unit 130. The additional data file is stored in
“adddata” directory. The additional data file is also stored in
a subdirectory identified by a title ID (title_id) the same way
as the game file and the patch file. Accordingly, the directory
of the additional data file is structured as “device:/adddata/
(title_id)/”.

When the file access unit 124 in the processor 120 accesses
the additional data file, the game will firstly call an additional
data mount API processing module and have this module
execute a mount processing of the additional data file. More
specifically, the additional data mount API processing mod-
ule instructs the mount unit 104 to execute a mount process-
ing of the desired additional data file. This instruction con-
tains the process 1D, the game title ID, the information
identifying the mount point (e.g., “adddata0”), and the infor-
mation identifying the additional data file.

US 9,367,550 B2

11

Upon receipt of the instruction from the additional data
mount API processing module, the mount unit 104 mounts the
specified path to the additional data file to the specified mount
point “adddata0”. As a result, the file access unit 124 can
access the desired additional data file by specifying the mount
point “adddata0”. Also, when the paths to a plurality of addi-
tional data files are to be mounted, the additional data mount
API processing module has the mount points vary from each
other by providing information specifying the mount points,
such as “adddatal” and “adddata2”, so that the file access unit
124 can access desired additional data files.

Also, the processor 120 can access a save data file stored in
“savedata” directory in the storage unit 130. The save data file
is also stored in a directory identified by atitle ID (title_id) the
same way as the game file and the patch file. Accordingly, the
directory of the save data file is structured as “device:/save-
data/(title_id)/”.

When the file access unit 124 in the processor 120 accesses
the save data file, the game will firstly call the save data mount
API processing module and have this module execute a mount
processing of the save data file. More specifically, the save
data mount API processing module instructs the mount unit
104 to execute a mount processing of the desired save data
file. This instruction contains the process ID, the game title
1D, the information identifying the mount point (e.g., “save-
data0”), and the information identifying the save data file.

Upon receipt of the instruction from the save data mount
API processing module, the mount unit 104 mounts the speci-
fied path to the save data file to the specified mount point
“savedata0”. As a result, the file access unit 124 can access the
desired save data file by specifying the mount point “save-
data0”. Also, when the paths to a plurality of save data files are
to be mounted, the save data mount API processing module
has the mount points vary from each other by providing
information specifying the mount points, such as “savedatal”
and “savedata”, so that the file access unit 124 can access
desired save data files.

Further, the processor 120 can also access another game
file. For example, in the case where “ABC TENNIS 2” canuse
the characters and the like of “ABC TENNIS 17, which has a
version older than that of “ABC TENNIS 2”, a password for
the execution of “ABC TENNIS 1” is recorded in advance in
asys directory of “ABC TENNIS 2”. This password is unique
to “ABC TENNIS 1” and is recorded in the sys directory of
“ABC TENNIS 17~ also.

“ABC TENNIS 2~ calls the game mount API processing
module and has this module execute a mount processing of
the other game. More specifically, the game mount API pro-
cessing module instructs the mount unit 104 to execute a
mount processing of the game file to be accessed. This
instruction contains the process ID, the game title ID, the
information identifying the mount point (e.g., “GAME1”),
the information identifying the other game file, and the pass-
word of the other game file.

Upon receipt of the instruction from the game mount API
processing module, the mount unit 104 determines whether
the password of the specified game file is in agreement with
the password contained in the sys directory of the specified
game file. If no agreement is determined, the mount process-
ing will not be executed. On the other hand, if an agreement is
determined, the mount unit 104 will mount the path to the
other game file at the specified mount point “GAME1”. As a
result, the file access unit 124 can access “ABC TENNIS 17
by specifying the mount point “GAME1”. At this time, if
there exists a patch file of the other game file, the path switch-
ing unit 106 executes the overlay processing. As a result, the
file access unit 124 can access the other game file.

10

15

20

25

30

35

40

45

50

55

60

65

12

It is to be noted that the attribute setting unit 108 can set
attributes to the respective mount points. Here the attribute
identifies “read only” or “read/write enable” concerning the
access restriction. The attribute setting unit 108 sets the
attribute of “read only” to the access point containing
“GAME”, which is a game file or a game file having been
overlay-processed. In a similar manner, the attribute setting
unit 108 sets the attribute of “read only” to the access point
containing “adddata”, which is an additional data game file.
On the other hand, the attribute setting unit 108 sets the
attribute of “read/write enable” to the access point containing
“savedata”, which is a save data file. The file system 100
processes the command from the file access unit 124 in com-
pliance with the attribute set by the attribute setting unit 108.
For example, even when a write request is sent to the file of
“GAMEQ”, the file system 100 rejects the request because the
attribute of “read only” is set to the file of “GAMEO0”. This
will prevent situations in which a file is operated unautho-
rizedly or illegally.

The present invention has been described based upon illus-
trative exemplary embodiments. The above-described
embodiments are intended to be illustrative only and it will be
obvious to those skilled in the art that various modifications to
the combination of constituting elements and processes could
be developed and that such modifications are also within the
scope of the present invention. In the exemplary embodi-
ments, games are cited and implemented as an example of
applications but applications other than games may be imple-
mented instead.

What is claimed is:
1. An information processing apparatus comprising:
a storage unit configured to store, using a directory struc-
ture, application files including: a group of files includ-
ing an application program, and a boot file for starting
the application program;
a file management unit configured to manage a file stored in
the storage unit using the directory structure;
a booting unit configured to execute the boot file upon
receipt of a boot instruction; and
a processor configured to execute the application program
after execution of the boot file,
wherein the booting unit gives a process ID to an applica-
tion process upon executing the boot file,
wherein the file management unit includes:
apath acquisition unit configured to acquire a path to the
application file in the storage unit when the booting
unit executes the boot file;

amount unit configured to associate the path acquired by
the path acquisition unit with the process ID and a
predetermined mount point, where the predetermined
mount point is a single mount point shared by the
application program and at least one other application
program; and

an attribute setting unit configured to set an attribute of the
mount point to read-only or read/write-enable, and

wherein the processor specifies the predetermined mount
point and the process ID so as to access the file related to
the application process given the process ID.

2. An information processing apparatus according to claim

1, wherein the application file contains information that iden-
tifies the predetermined mount point.

3. An information processing apparatus according to claim

1, wherein the mount unit generates a correspondence table
that associates the predetermined mount point and the path to
the application file with the process ID.

US 9,367,550 B2

13

4. An information processing apparatus according to claim
1, wherein the mount unit executes a mount processing with-
out any instruction from the processor.
5. An information processing apparatus according to claim
1, wherein:
when the booting unit executes boot files of a plurality of
applications, the booting unit gives different process IDs
to respective application processes, and
the mount unit defines the same mount point to a plurality
of application processes and associates, for the respec-
tive application processes, the acquired path with the
process 1D and the defined mount point.
6. A non-transitory, computer-readable medium containing
a program that is executable by a computer, the program
comprising:
an acquisition module configured to acquire, when a boot
file of an application program is started, a path to an

10

15

14

application file in a storage unit configured to store,
using a directory structure, application files including: a
group of files including the application program, and a
boot file for starting the application program;

a correspondence module configured to associate the
acquired path with a process 1D given to an application
process as a result of execution of the boot file and with
a predetermined mount point, where the predetermined
mount point is a single mount point shared by the appli-
cation program, and at least one other application pro-
gram, and an attribute of the mount point is read-only or
read/write-enable; and

a specifying module configured to specify the path associ-
ated with the predetermined mount point and the process
ID, when a command designating the predetermined
mount point and the process ID is received.

#* #* #* #* #*

